SUBJECT INDEX

Acetobacter suboxydans, cellular locali-		women (Bulbrook, Greenwood and	
zation of oxidase systems (De Ley and		THOMAS)	361
Dochy)	277	Aromatic amines, o-hydroxylation in vivo,	
Acetyl-CoA, in patulin biosynthesis (BAS-		mechanism (Miller and Miller)	380
SETT AND TANENBAUM)	535	Asparagine, and derivatives, action of	
Acetylhexosamine compounds, enzymi-		mammalian liver enzyme preparations	
cally released from Micrococcus lyso-		on — (De Groot and Lichtenstein)	92
deikticus cell walls, enzymic sensitivity		Asparagine, and derivatives, action of	
of purified —— (Ghuysen)	473	Pseudomonas fluorescens extracts on	
Acetylhexosamine compounds, enzymi-		(DE GROOT AND LICHTENSTEIN)	99
cally released from Micrococcus lyso-		Bacillus cereus, effect of thymidine upon	
deikticus cell walls, isolation and com-		incorporation of uracil into — (SELLS)	548
position (Ghuysen and Salton)	462	Bacillus subtilis, intracellular RNase from	
Acidic peptide conjugates, in mammalian		—— (NISHIMURA AND MARUO)	355
liver (Steinberg, Vaughan, Sherman		Bacteria, drug-sensitive and drug-resist-	
AND O'DELL)	225	ant, metabolism of uracil and 5-fluoro-	
Actomyosin-ATPase, initial phase of ——,		uracil (Brockman, Davis and Stutts)	22
factors influencing activity (Tonomura		Bacteria, vitamin K in —— (JACOBSEN	
	135	AND DAM)	211
Adenine, metabolism by microorganisms,		Bacterial transformations, studies on role	
interference by aminotriazole (WEYTER	_	of proteins (THOMAS)	5°
AND BROQUIST)	567	Brain, metabolism of specifically labelled	
Adenosine triphosphatase, activities of	0	glucose, effect of inhibitors (Hoskin).	309
meromyosins (Mueller and Perry)	187	Brain, ox, isolation of a new complex	
Adenosine triphosphatase, initial phase of		lipids: triphosphoinositide from ——	
actomyosin ——, factors influencing		(DITTMER AND DAWSON)	379
activity (Tonomura and Kitagawa).	135	N-Bromosuccinimide, action on trypsin-	
Actiocholanolone, isolation from urine		ogen and derivatives (VISWANATHA,	6
of oophorectomised-adrenalectomised		LAWSON AND WITKOP)	216
women (Bulbrook, Greenwood and	267	Calcium, transport by crude and purified	
THOMAS)	361	serotonin receptor (Woolley And	
Aldolase, reversible inhibition by ferricyanide (Birkenhäger)	182	Campbell)	543
Alkaline phosphatase, see Phosphatase	102	studies (VILLOUTREIX) 434,	4.40
Amine oxidase, formation of spermidine		Catalase, intracellular localization in rat	442
from spermine by serum —— (BACH-		liver (DE DUVE, BEAUFAY, JACQUES,	
RACH AND BAR-OR)	545	RAHMAN-LI, SELLINGER, WATTIAUX	
Amines, activation of Hill reaction by —	343	AND DE CONINCK)	18€
(Good)	502	Catalase, kinetics of H ₂ O ₂ destruction in	100
Amino acids, penetration in rabbit uterus,	5-2	Rhodopseudomonas spheroides, role of	
early effect of estradiol on — (Noall)	180	— (CLAYTON)	165
Amino acids, transfer from "S-RNA" to		Catechols, condensation with ethylene-	, 0,
purified ribonucleoprotein particles		diamine (Weil-Malherbe)	351
from rat liver microsomes (Von der		Cell wall, Micrococcus lysodeikticus, acetyl-	33-
DECKEN AND HULTIN)	189	hexosamine compounds enzymically	
γ-Aminobutyric-glutamic transaminase,		released from (GHUYSEN AND	
exchange reactions catalyzed by			473
(Albers and Jakoby)	457	Salton)	,,,
Aminotriazole, adenine and histidine		thesis and mutation induced by u.v	
metabolism of microorganisms, inter-		light (Doudney and Haas)	375
ference by —— (Weyter and Bro-		Chloroplasts, swiss-chard, photophosphor-	
QUIST)	567	ylation by —— (AVRON)	257
Amylodextrin, crystallization, effect of in-		Cholesterol, formation in rat liver, β -	
organic ions (Hizukuri, Fujii and	_	hydroxy-β-methylglutaryl-CoA reduc-	
NIKUNI)	346	tase, cleaving and condensing enzymes	
Androsterone, isolation from urine of		in relation to —— (BUCHER, OVERATH	
oophorectomised - adrenalectomised		AND LYNEN)	491

Chromatography, behaviour of meromyo-		(FORRO AND WERTHEIMER)	>
sins (MUELLER AND PERRY)	187	Estradiol, amino acid penetration in rabbit	
Chromatography, paper ——, detection of		uterus, early effect of (NOALL)	:80
tritium (Wilson)	522	Ethanolamine, identification and quanti-	
Chromoprotein, from Mycobacteria, pros-		tative estimation in lipid hydrolysates	
thetic group of ——— (Cousins)	532	(MAGEE, BAKER AND THOMPSON)	111
Cleavage enzyme, relation to cholesterol		Ethylenediamine, condensation of cate-	
formation in rat liver (BUCHER,			351
OVERATH AND LYNEN)	491	Fatty acids, biosynthesis from malonyl-	
Coagulase, Staphylococcus aureus, puri-	_	CoA (GANGULY)	110
fication (MURRAY AND GOHDES)	518	Ferrimyoglobin, reaction between	
Cofactors, mild procedure for separating		and methyl hydrogen peroxide, mag-	
enzymes and — (KISLIUK)	531	neto-kinetic study (BRILL, EHREN-	
Collagen, microelectrophoretic studies of	_	BERG AND DEN HARTOG)	3:3
soluble —— (GILBERT)	156	Flavin nucleotides, role in photosynthetic	
Collagen fibers, chemical shrinkage and		phosphorylation, cell-free extracts of	
relaxation, study (CHVAPIL AND ZAH-		Rhodospirillum rubrum (BALTSCHEFFS-	
RADNÍK)	329	KY)	T
Condensing enzyme, relation to cholesterol		Fluorophenylalanine, biosynthetic incor-	
formation in rat liver (BUCHER,		poration into crystalline proteins	
OVERATH AND LYNEN)	49I	(Vaughan and Steinberg)	230
Countercurrent distribution, of RNA		5-Fluorouracil, metabolism by drug-sen-	
	193	sitive and drug-resistant bacteria	
5'-Cytidylic acid, reduction to desoxy-		(Brockman, Davis and Stutts)	.2 _2
cytidylic acid by mammalian enzymes		Fowl leukemia virus, see Virus	
(Moore and Hurlbert)	37I	Fowl plague virus, see Virus	
Cytochrome, b-type —— from Sclerotinia		Galactoside-permease, Escherichia coli,	
libertiana, purification and some prop-		kinetic studics (Keres)	70
erties (Yamanaka, Horio and Oku-		Glucan-peptide complex, rat diaphragm,	
NUKI)	349	rapid in vitro incorporation of [14C]-	
Desoxycytidine diphosphate choline, in		glucose into —— (Walaas, Borre-	
sea urchin eggs (Sugino)	425	bæk, Kristiansen and Walaas)	562
Desoxycytidylic acid, reduction of 5'-		Gluconobacter liquefaciens, cellular local-	
cytidylic acid to —— by mammalian		ization of oxidase systems (DE LEY	
enzymes (Moore and Hurlbert)	371	AND DOCHY)	277
Desoxynucleosidic compounds, studies		[MC]Glucose, rapid in vitro incorporation	
(Sugino, Sugino, Okazaki and Oka-		into a glucan-peptide complex of rat	
ZAKI)	425	diaphragm (Walaas, Borrebæn,	
Desoxyribonucleic acid, see Nucleic acid		Kristiansen and Walaas)	562
Diaphragm, rat, rapid in vitro incorpo-		Glucose, specifically labelled, metabolism	
ration of [14C]glucose into glucan-		by brain, effect of inhibitors (HOSKIN)	309
peptide complex (Walaas, Borre-		Glucose oxidase, from Penicillium amaga-	
BÆK, Kristiansen and Walaas)	562	sakiense, crystallization (KUSAI, SE-	
Eberthella typhi, isolation of substrate for		kuzu, Hagihara, Okunuki, Yamauchi	
lysozyme from cell wall (Colobert		and Nakai)	555
AND CREACH)	167	Glucose-6-phosphatedehydrogenase, prep-	
Elastomucoproteinase, elasticity-increas-		aration from Neurospora crassa (RAD-	
ing property of —— (Banga and Baló)	3 ⁶ 7	HAKRISHNAN)	546
Electrophoresis, in silica gel of nucleic		Glutamic dehydrogenase, from human	
acids (Harris and Davis)	373	placenta, preparation and properties	
Enolase, photooxidation of yeast			5.54
(Brake and Wold)	171	n-Glyceraldehyde-3-phosphate dehydro-	
Enzymes, mild procedure for separating		genase, role of sulphydryl groups in	
co-factors and —— (KISLIUK)	531	stabilization of structure (ELÖDI)	272
Erythrulose, formation from hydroxy-		a-Glycosides, metabolism in yeast of de-	
pyruvate by yeast enzymes (Holzer		fined genotype, accumulation of tre-	
AND GOEDDE)	297	halose and sucrose in relation to	
Escherichia coli, kinetic studies on galacto-		(AVIGAD)	124
side-permease (KEPES)	70	Glyoxylic acid, enzymic formation from	,
Escherichia coli, non-growing, turnover of		y-hydroxy-glutamic acid (DEKKER)	→ 7 - 1
protein and RNA in soluble and ribo-		Hacmoglobin, a comment on pH-depend-	
some fractions (MANDELSTAM AND	4.5	ent dissociation of —— (CHARLWOOD,	70"
IIALVORSON)	43	Gratzer and Beaven) Haem proteins, secondary gasation of ——	191
Escherichia coli, thymine-deficient strains,			
organization and replication of DNA		and biological nitrogen fixation (BAUER	

AND MORTIMER)	170	Pare, Axelrod and Weissbach)	377
Hepatomas, Dunning and Novikoff	•	Meromyosin, chromatographic behaviour	
in rat, enzymic study on cellular origin		and ATPase activities (MUELLER AND	
of —— (Pitot and Potter)	537	Perry)	187
Hexose monophosphate, pathway in thy-	337	Methyl hydrogen peroxide, reaction be-	•
roid tissue (Dumont)	354	tween ferrimyoglobin and ——, mag-	
Hill reaction, activation by amines (Good)		neto-kinetic study (Brill, Ehren-	
Histidine, metabolism by microorganisms,	J		210
		BERG AND DEN HARTOG)	313
interference by aminotriazole (WEYTER		Micrococcus lysodeikticus, acetylhexos-	
AND BROQUIST)	567	amine compounds released from cell	
	3-7		
γ-Hydroxyglutamic acid, enzymic for-		walls, studies (GHUYSEN AND SALTON)	
mation of glyoxylic acid from ——		462,	473
(Dekker)	774	Microelectrophoresis, studies of soluble	.,.
TT 1	1/4		
Hydroxylysine, occurrence in trypsin		collagen (Gilbert)	150
(VISWANATHA AND IRREVERRE)	564	Microorganisms, metabolism of adenine	
	3-1		
γ-Hydroxy-γ-methylglutamic acid, for-		and histidine, interference by amino-	
mation from a common impurity in		triazole (Weyter and Broquist)	567
pyruvic acid (Goldfine)	557	Microsomes, pea seedlings, RNases in —	
	337		C
β -Hydroxy- β -methylglutaryl-CoA reduc-		(Matsushita and Ibuki)	358
tase, —, cleavage and condensing		Microsomes, rat liver, incorporation of	
enzymes in relation to cholesterol for-		leucine into microsomal albumin by	
mation, rat liver (Bucher, Overath		pH-5 enzymes and —— (OGATA, HIRO-	
AND LYNEN)	491	KAWA AND OMORI)	178
Hydroxypyruvate, formation of erythru-	12-	Mitochondria, kidney, vitamin D and	/ -
		, , , , , , , , , , , , , , , , , , , ,	
lose from by yeast enzymes		structure of —— (DELUCA, REISER,	
(Holzer and Goedde)	297	Steenbock and Kaesberg)	526
	- 21		5-0
Kidney, vitamin D and the structure		Mutation, chloramphenicol, nucleic acid	
of mitochondria (Deluca, Reiser,		synthesis and —— induced by u.v	
Steenbock and Kaesberg)	526	light (Doudney and Haas)	275
	320		375
Lactic dehydrogenase, yeast, comparative		Mycobacteria, prosthetic group of a	
study of two isolated forms (NYGAARD)	85	chromoprotein from —— (Cousins) .	532
Leucine, incorporation into microsomal	J	Mycobacterium phlei, subcellular distri-	00
albumin by microsomes and pH-5 en-		bution of a biologically active naphto-	
zymes from rat liver (Ogata, Hiro-		quinone (Kashket and Brodie)	550
KAWA AND OMORI)	T = 8	Myosin, fish, isolation and properties	33-
	178		
Lipase, pancreatic —, relation of metals		(Hamoir, McKenzie and Smith)	141
and sulphydryl groups to activity of		Naphtoquinone, biologically active ——,	
	.0-		
—— (Wills)	401	subcellular distribution in Mycobac-	
Lipids, identification and quantitative		terium phlei (Kashket and Brodie).	550
estimation of ethanolamine and serine		Neurospora crassa, preparation of an active	
in hydrolysates (Magee, Baker and	_	glucose-6-phosphate dehydrogenase	
Thompson)	118	from —— (Radhakrishnan)	546
Lipoyl dehydrogenase, reaction mecha-		Nitrogen fixation, secondary gasation of	٠,
	- Q .		
nism, study (Massey and Veeger)	184	haem proteins and biological —	
Liver, mammalian, acidic peptide conju-		(Bauer and Mortimer)	170
gates in —— (STEINBERG, VAUGHAN,		Nuclease, ribo, in microsomes from	•
	22.		a = 0
SHERMAN AND O'DELL)	225	pea seedlings (Matsushita and Ibuki)	358
Liver, peroxidase activity found in ribo-		Nuclease, ribo ——, intracellular ——	
nucleoprotein particles (Матѕиѕніта		from Bacillus subtilis (NISHIMURA AND	
	.	M . =====	
AND IBUKI)	540		355
Liver, rat, intracellular localization of		Nucleic acid, chloramphenicol, synthesis	
catalase and some oxidases (DE Duve,			
BEATTERN LACOURS D I. C.		of — and mutation induced by u.v	
Beaufay, Jacques, Rahman-Li, Sel-		light (Doudney and Haas)	375
LINGER, WATTIAUX AND DE CONINCK)	186	Nucleic acid, desoxyribo —, organization	
Lysopine, new amino acid isolated from		and replication, thymine-deficient	
crown gall tissue, structure (BIEMANN,		strains of Escherichia coli (Forro and	
Lioret, Asselineau, Lederer and		Wertheimer)	9
Polonsky)	369	Nucleic acid, electrophoresis in silica gel	,
I recomme igolation of a between the	209		
Lysozyme, isolation of substrate from cell		(Harris and Davis)	373
wall of Eberthella typhi (Colobert and		Nucleic acid, inactivation of TMV by X-	
Creach)	167	rays and breakage of —, relationship	
Malonyl-CoA, biosynthesis of fatty acids		, cand browning or , retailousing	
	/	/Exer sypen Ducant com T	-0.
		(Englander, Buzzell and Lauffer)	385
from —— (GANGULY)	110	(ENGLANDER, BUZZELL AND LAUFFER) Nucleic acid, ribo ——, fractionation and	385
from —— (GANGULY)		Nucleic acid, ribo ——, fractionation and	385

Nucleic acid, ribo, light scattering		Progesterone, synthesis and metabolism,	
studies on ascites tumour cell		human and bovine ovary (SWEAT,	
(KRONMAN, TIMASHEFF, COLTER AND		BERLINER, BRYSON, NABORS, HASKELL	
Brown)	410	AND HOLMSTROM)	289
Nucleic acid, soluble ribo, isolation	•	Protein, biosynthetic incorporation of	-09
without an ultracentrifuge (Sмітн)	360	fluorophenylalanine into crystalline	
Nucleic acid, soluble ribo, transfer of	J	— (Vaughan and Steinberg)	230
amino acids from to purified ribo-		Protein, determination on basis of copper	2.30
nucleoprotein particles from rat liver		binding capacity (Westley AND	
microsomes (VON DER DECKEN AND		Lambeth)	26.
HULTIN)	180	Protein, substance from biological materi-	304
Nucleic acid, turnover in soluble and ribo-	109		
some fractions of non-growing Escher-		als affecting synthesis of ——, studies	
		(Hradec and Stroufová)	32
ichia coli (MANDELSTAM AND HALVOR-		Protein, turnover in soluble and ribosome	
son)	43	fractions of non-growing Escherichia	
Nucleoprotein, 1100 —— particles from		coli (MANDELSTAM AND HALVORSON) .	43
pea seedlings and rabbit liver, peroxi-		Pseudomonas fluorescens, action of extracts	
dase activity found in —— (MATSUS-		on asparagine and asparagine deriva-	
HITA AND IBUKI)	540	tives (DE GROOT AND LICHTENSTEIN)	99
Nucleoprotein, ribo ——— particles from		Pyruvic acid, formation of γ-hydroxy-	
rat liver microsomes, transfer of amino		y-methylglutamic acid from a common	
acids from "S-RNA" to purified ——	_	impurity in —— (Goldfine)	557
	189	Rhodopseudomonas spheroides, kinetics of	
Nucleoside phosphorylase, pig liver and		H_2O_2 destruction, roles of catalase and	
calf spleen (BARKER AND GILLAM)	163	other enzymes (CLAYTON)	265
Nucleoside phosphotransferase, carrot,		Rhodospirillum rubrum, flavin nucleotides	
synthetic ability of the transfer enzyme		and photophosphorylation in cell-free	
(Tunis and Chargaff)	206	extracts (Baltscheffsky)	r
Nucleotide enzyme complex, associated		Rhodotorula mucilaginosa, biosynthetic	
with fowl leukemia virus (RIMAN AND		study of carotenoids by analysis of	
Thorell)	565	mutants and use of inhibitor of caro-	
Oestrogens, 6-hydroxylated, bio-		tenogenesis (VILLOUTREIX)	443
genesis in human tissues (Brever,		Rhodotorula mucilaginosa, influence of	• •
KNUPPEN, ORTLEPP, PANGELS AND		various chemical agents on caroteno-	
Риск)	560	genesis (VILLOUTREIX)	434
Ovary, human and bovine, synthesis and	3	Ribonuclease, see Nuclease	7.77
metabolism of progesterone (SWEAT,		Ribonucleic acid, see Nucleic acid	
Berliner, Bryson, Nabors, Haskell		Ribonucleoprotein, see Nucleoprotein	
AND HOLMSTROM)	289	Ribosomes, non-growing Escherichia coli,	
Paper chromatography,	-09	turnover of protein and RNA (Mannet-	
see Chromatography		STAM AND HALVORSON)	12
Patulin, acetyl-CoA in biosynthesis of		Sarcina lutea, metabolism, patterns of	43
(Bassett and Tanenbaum)	20E	oxidative assimilation (BINNIE, DAWES	
Penicillium amagasahiense, crystallization	333		22~
of glucose oxidase from —— (Kusai,			237
SEKUZU, HAGIHARA, OKUNUKI, YAMA-		Sarcosomes, thoracic muscle of house fly,	
		respiratory activity and respiratory	
UCHI AND NAKAI)	222	control of (VAN DEN BERG AND	
Peptide conjugates, acidic —— in mam-		SLATER)	170
malian liver (Steinberg, Vaughan,		Sclerotinia libertiana, purification and	
	225	some properties of a b-type cytochrome	
Peroxidase, activity of ribonucleoprotein			349
particles from pea seedlings and rabbit		Sea urchin eggs, desoxycytidine diphos-	
liver (Matsushita and Ibuki)	540	phate choline in (SUGINO)	425
Phosphatase, placental alkaline, puri-		Sea urchin eggs, modified microbioassay	
fication (AHMED AND KING)	320	method for desoxynucleosides, appli-	
Photophosphorylation, by swiss-chard		cation to —— (Sugino, Sugino, Oka-	
chloroplasts (Avron)	² 57	ZAKI AND OKAZAKI)	417
Photophosphorylation, cell-free extracts		Serine, identification and quantitative	
of Rhodospirillum rubrum, flavin nu-	-	estimation in lipid hydrolysates (MA-	
cleotides and —— (BALTSCHEFFSKY) .	ī	GEE, BAKER AND THOMPSON)	118
Polynucleotides, end-group determina-		Serotonin, calcium transport by crude and	
tions, applicability of formel titration	6.	purified receptor (Woolley AND	
(HOARD)	62	CAMPBELL)	543
Polypeptide antigen, a specific synthetic	-0-	Spermidine, formation from spermine by	
—— (SELA AND ARNON)	402	serum amine oxidase (Bachrach and	

Bar-Or)	545	HEFF, COLTER AND BROWN)	410
Staphylococcus aureus, purification of coagulase (Murray and Gohdes)	518	Uracil, incorporation into Bacillus cereus, effect of thymidine (Sells)	548
Sucrose, accumulation in relation to me-	510	Uracil, metabolism by drug-sensitive and	24
tabolism of α -glycosides in yeasts of		drug-resistant bacteria (BROCKMAN,	
defined genotype (AVIGAD)	124	DAVIS AND STUTTS)	22
Sulphydryl groups, relation of metals and	·	Uterus, rabbit, early effect of estradiol on	
— to activity of pancreatic lipase		amino acid penetration in —— (NOALL)	180
(WILLS)	481	Vaccinia virus, see Virus	
Sulphydryl groups, role in stabilization of		Vitamin D, and the structure of kidney	
structure of D-glyceraldehyde-3-phos-		mitochondria (Deluca, Reiser, Steen-	
phate dehydrogenase (ELÖDI)	272	BOCK AND KAESBERG)	526
Thermodynamics, application of the		Vitamin K, in bacteria (JACOBSEN AND	0.1.1
second law to cellular systems, some consequences (Morowitz)	240	Dam)	211
Thymidine, incorporation of uracil into	340	effects of some variables (Allison and	
Bacillus cereus, effect of —— (Sells)	548	VALENTINE)	400
Thyroid tissue, hexose monophosphate	JT-	Virus, fowl leukemia —, a nucleotide	
pathway in —— (Dumont)	354	enzyme complex associated with —	
Tobacco mosaic virus, see Virus		(RIMAN AND THORELL)	565
Trehalose, accumulation in relation to		Virus, tobacco mosaic, inactivation	
metabolism of α -glycosides in yeasts of		by X-rays and breakage of nucleic acid,	
defined genotype (AVIGAD)	124	relationship (Englander, Buzzell	_
Triphosphoinositide, new complex lipids		AND LAUFFER)	385
isolated from ox brain (DITTMER AND		Virus, vaccinia and fowl plague, ad-	
Dawson)	379	sorption to cells in suspension (Allison	
Tritium, detection on paper chromato-	700	AND VALENTINE)	393
grams (Wilson)	522	X-rays, inactivation of TMV by breakage of nucleic acid and —, relationship	
solutions of native and guanidinated		(Englander, Buzzell and Lauffer)	38:
— (KAY AND BAILEY)	149	Yeast, comparative study of two isolated	J°.
Trypsin, occurrence of hydroxylysine in	15	forms of lactic dehydrogenase (Ny-	
(Viswanatha and Irreverre) .	564	GAARD)	8.5
Trypsinogen, action of N-bromosuccin-	•	Yeast, formation of erythrulose from hy-	
imide on —— (Viswanatha, Lawson		droxypyruvate by enzymes from ——	
AND WITKOP)	216	(Holzer and Goedde)	297
Tryptophan, studies on emission of ——		Yeast, of defined genotype, accumulation	
(Fujimori)	251	of trehalose and sucrose in relation to	
Tryptophol, formation in disulfiram-	760	metabolism of α -glycosides (AVIGAD).	124
treated rat (SMITH AND WORTIS)	569	Yeast, photooxidation of enolase (Brake	
Tumour, ascites —, light scattering		AND Wold)	171

ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 40 (1960)

Page 137:

Line 3: Change "during" into "after".

Legend Fig. 3: Add "The fine curve indicates hydrolysis of ITP.".

Line 9: Between "phase" and "ATPase" insert "of".

Page 138:

Line 6: Delete "B".